DS 598 Introduction to Reinforcement Learning

Xuezhou Zhang

Additional Information

• Office Hour: Tue/Thu 2:00-3:00 PM (right after class), CDS 14th Floor

• TF: Gaurav Koley

• Course Website: zhangxz1123.github.io/DS598.html

Blackboard only used for HW turn-in.

Reading Materials

Reinforcement Learning: Theory & Algorithms

https://rltheorybook.github.io/

• This is an advanced RL textbook, so we will pick specific subsections for you to read.

This course introduces Reinforcement Learning (RL)

I. Markov Decision Process (MDP): Dynamic Programming & planning.

II. Model-based, value-based, policy based learning paradigms.

III. Modern challenges in RL.

However, the most fun part...

Game Al Competition!

Details will come in the following weeks.

Logistics

• Written Assignment: 40%

• Competition: 50%-105%

Written Assignment (40%)

• 4 assignments: 10% each

Type your solution using LaTeX.

• LaTeX tutorial in week 1 Discussion Session.

Competition (50%-105%)

• Form a team of \leq 3 people by Jan 27th [<u>link</u>].

- Design Sharing Presentation: 10%
- Beating the Midterm Champion: 10%
- Final Report: 30%
- Midterm tournament: 15%(1) /10%(2-3) /5%(4-8)
- Final tournament: 30%(1) /20%(2) /15%(3) /10%(4-8)
- (Bonus) Least domain knowledge: 10%(1)

Prerequisites

Linear algebra & probability

Programming in Python

ML background*

What is machine learning?

- Given a dataset $\{x_1, x_2, \dots, x_n\} \sim P$
- Find patterns in it that applies to future samples from P.
- Unsupervised Learning: pattern = \hat{P} .
- Supervised Learning: pattern = $p(y|x_{-y})$.

ML vs. Reinforcement Learning

- ML:
 - Make predictions.
 - Rely on existing data.

- RL:
 - Perform actions.
 - Collect its own data.

VS.

ML vs. Reinforcement Learning

• Example: Trading in the Stock Market.

• SL: What are the stock prices tomorrow?

RL: How many shares of each stock should I purchase?

What's different in RL?

1. Collect your own data.

2. Actions have consequences. Future observations are determined by past actions.

3. To solve a task, we often need to perform a sequence of actions.

What differentiate good vs. bad decisions?

• In SL, you fit to labels, e.g. cat vs. dog.

• In RL, you maximize a utility function, e.g. \$ profit/day.

The Mathematical framework: Markov Decision Process (MDP)

Environment

Receive Reward: $r_h \sim r(s_h, a_h)$

RL Agent

Observe Next state: $s_{h+1} \sim P(\cdot | s_h, a_h)$

• Markovian Transition: s_{h+1} only depends on s_h , a_h .

Infinite Horizon Discounted MDP

- MDP $\mathcal{M} = \{S, A, P, r, \gamma\}$
 - *S* is the state space.
 - A is the action space.
 - $P: S \times A \to \Delta(S)$ is the transition probability function.
 - $r: S \times A \rightarrow [0,1]$ is the reward function.
 - $\gamma \in [0,1)$ is the discounting factor.
- A policy is defined as $\pi: S \to \Delta(A)$.

How good is a policy π ?

Value function

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) | s_{0} = s, a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot | s_{h}, a_{h})\right]$$

Q function

$$Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) | (s_0, a_0) = (s, a), a_h \sim \pi(s_h), s_{h+1} \sim P(\cdot | s_h, a_h)\right]$$

Bellman Equation

$$V^{\pi}(s,a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) | s_{0} = s, a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot | s_{h}, a_{h})\right]$$

$$= \mathbb{E}[r(s, \pi(s))] + \mathbb{E}\left[\sum_{h=1}^{\infty} \gamma^{h} r(s_{h}, a_{h}) | s_{0} = s, a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot | s_{h}, a_{h})\right]$$

$$= \mathbb{E}[r(s, \pi(s))] + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) | s_{0} = s', a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot | s_{h}, a_{h})\right]$$

$$= \mathbb{E}[r(s, \pi(s))] + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\pi}(s')$$

Bellman Equation: $V^{\pi}(s, a) = \mathbb{E}[r(s, \pi(s))] + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\pi}(s')$

Today we covered

• SL vs. RL

Infinite horizon discounted MDP

Value function and Q function

Bellman Equation