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Chapter 9: Offline RL
(Continued)



Offline Data Coverage
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D ={s,a,s’}, where s,a ~d®,s" ~ P(-|s,a)

Optimal policy 7#*’s (s, a)-distribution

Finding =*

seems
hopeless!

v

Offline data (s,a)
distribution: d™(s, a)



Constrained Pessimistic Policy Optimization (CPPO)

1. MLE: P = max Z In P(s'| s, a)
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2. Constrained Pessimistic Policy Optimization
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Pessimism seems key in achieving
robustness.

& Can we get it without solving a constrained optimization problem?



Recap:

Multi-armed Bandits and UCB Algorithm

4 a" = arg max{{"(a) ++/In(KN/6)/N"(a) }

N
n=1

Key step in the proof:

R In(KN/&
p(a*) = pa”) < @) + /IE(VT@) — u(a"

“optimism in the face of uncertainty (OFU)”
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What if, instead of adding the UCB
bonus, we subtract it?



The Lower-Confidence Bound Algorithm?

G := argmax,fi(a) — v/In(KX N/8)/N(a)

® ; What can we achieve?

A\
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The Lower-Confidence Bound Algorithm?

G := argmax,fi(a) — v/In(KX N/8)/N(a)

® ; What can we achieve?

Against any comparator arm a, the arm @ we pick

v :
will have a reward at least

Arm 1 Arm 2 Arm 3

KN
u(a) — u(@) < Jln (&) /@

“pessimism in the face of uncertainty (OFU)”



Formal Theoretical Guarantee for CPPO

2. CPPO’s Sample Complexity:

Given n (i.i.d) offline data points, with high probability:

(Hz @;m( 7115

n
\ /
In the bandit setting: CT. = Sup; 4 % = 1/d™(a)

YVt Vi, — Vi, =0




LCB achieves the same effect as
Constrained Policy Optimization!



UCBVI: Model-based Learning

Inside iteration n :

Use all previous data to estimate transitions TD\”

Design reward bonus

Optimistic planning with learned model:

Collect a new trajectory by executing z” in the real world P starting from s,



LCBVI: Pessimistic Model-based Learning
OBV Modetbasedtearming

Inside iteration n :

Use all previous data to estimate transitions j’\”

Design reward bonus b1
{rn — bntp=1

Optimistic planning with learned model:

Collect a new trajectory by executing z” in the real world P starting from s,

LCBVI achieves the same type of guarantee as CPPO!



One of the most important observations in RL.:

The symmetry between
online (optimism) and offline (pessimism)
learning



Any reward bonus-type exploration mechanism can be
immediately turned to a robust-learning mechanism in offline RL.

Psuedo-based bonus
Hashmap-based bonus
Uncertainty-estimation

Random Network Distillation (RND)

All you need to do in your code: change the “+” sign to “-”



Some other approaches from the Empirical Community:

1. KL regularization: 7 = argmax J, () + a = KL(m|m,)
(Requires the knowledge of the data collecting policy)

Equivalent to running TRPO/PPO on the offline data and use
as the reference policy to calculate the regularizer.

This is how ChatGPT is trained!



Some other approaches from the Empirical Community:

1. KL regularization: 7 = argmax J, () + a = KL(m|m,)

v Pro: able to regularize the learned policy.
v Pro: Extremely easy to implement
Con: Can’t realize the full potential of the offline data.

Recall the “stitching” effect:




Some other approaches from the Empirical Community:

1. KL regularization: 7 = argmax J, () + a = KL(m|m})

« This is also called advantageous imitation learning:

« The KL term alone would be imitation learning
» The first term tries to improve upon the behavior policy in a KL-
restricted neighborhood.




Some other approaches from the Empirical Community:

2. Conservative Q-learning (CQL)

HalfCheetah-v2: AverageReturn HalfCheetah-v2: log(Q)
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Some other approaches from the Empirical Community:

2. Conservative Q-learning (CQL)
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can show that Q™ < QT for large enough «

true Q-function



Some other approaches from the Empirical Community:

3. There are many more...



Is that all?

_’*)1:M

* Given a dataset of transition D = {(s;, a;, s;,7:) }i—1.7.

* Find the “best possible” policy 4.

@ Is this really the right objective?



