Chapter 10: Multi-agent RL
(Continued)



Recap: Normal-form Game

A normal-form game is a tuple (n, Ay..», R1..n).

e 1 is the number of players,
e A; is the set of actions available to player ;
- Ais the joint action space A; x ... x A,

e R;is player i's payoff function A — R.

Ry

Ry =




Minimax Optimal Solution

e Play strategy with the best worst-case outcome.

argmax min R;({0;,0-;))
0, €EA(A;) a—; €A

* How to compute it?

e Linear programming [Whiteboard Example].



Nash Equilibria

e A best response set is the set of all strategies that are
optimal given the strategies of the other players.

BRi(o_i) ={o: | Vo Ri({os,0-3)) > Ri({0,0-:))}

e A Nash equilibrium is a joint strategy, where dall
players are playing best responses to each other.

Vie{l...n}  o; € BRi(0—;)

* Nash = Minimax in Two-Player Zero-sum games, but not always
[Whiteboard Example].



Existence of Nash Equilibria

e All finite normal-formm games have at least one Nash
equilibrium. (Nash, 1950)

e In zero-sum games. ..

- Equilibria all have the same value and are
interchangeable.

(01,09) ,(0},0%) are Nash = (oy,05) is Nash.

- Equiilibria correspond to minimax optimal strategies.



Computation of Nash Equilibria

e The exact complexity of computing a Nash
equilibrium is an open problem. (Papadimitriou,
2001)
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* Nash-equilibrium is PPAD-hard [2008].



Extensive-form Game

* Example: any full-observation turn-based games, e.g. Chess, Go.

Left Right

e

Drop Jump

o -1,



Stochastic/Markov Games

MDPs
- Single Agent
- Multiple State

Stochastic Games
- Multiple Agent
- Multiple State



Stochastic/Markov Games

@_,@_» ...... ®_,@

Two-player zero-sum Markov Game (S, A, B, P, r, H) [Shapley 1953].

e S: set of states; A, B: set of actions for the max-player/the min-player.
® Pu(shi1|sh, an, bn): transition probability.
o ry(Sh,an, bn) € [0, 1]: reward for the max-player (loss for the min-player).

e H: horizon/the length of the game.



Our Setup

e Fully observable: joint actions and states are revealed to both agents.

e Tabular: the size of S, A, B is finite and small.



Policy and Value

e General policy for the max-player (depends on the entire history):
T (SXAXxB)"™ xS — A
e Markov policy for the max-player (depends on the current state):
mih:S = Ag

Policy of the min-player can be defined by symmetry.

e Value V™ for joint policy m = (m1,m2): the expected cumulative reward
received by the max-player if both agents follow the joint policy :

H
V™ = E, [Z rh(sh, ah, bh)]

h=1



Nash Equilibria

Nash Equilibria
The policies (77, 75 ) is a Nash equilibrium if no player has incentive to
deviate from her current policy. That is, for any w1, m

Vﬂ'l,ﬂ'; < Vﬂf,ﬂg < Vﬂf,‘n‘g

In two-player zero-sum Markov games, minimax theorem holds:

maxmin V™™ = min max V"2

1 2 2 1



Nash Equilibria

The optimal strategy if always facing best responses.

“We may not win by a large margin, but no one beats us.”

Objective: find e-approximate Nash equilibria (71, 72) using a small number of
samples with mild dependency on S, A;, Az, ¢, H.

max V%2 —min V172 L,

™ ™o



Technical Challenges

To name a few:
e Large size of policy space:

Q((1/€)™*) Markov policies in the tabular setting

e Nash equilibrium policy is Markov, but the best response may not be.

e MGs do not allow efficient no-regret learning [Bai, Jin, Yu, 2020].

T T
max S V™ N X o aoivH S A BY TR
ax ) Vi > VTR < poly( )



Computing NE in Zero-sum Markov Games:
“anecdotal Recipe”

Key observation: given a fixed opponent, computing best response (BR) is a
single-agent RL problem.

4 ) ( B

Nash finding algorithms
with BR oracle

Single-agent RL algorithms

value-iteration

self-play Q-learning
fictitious play DQN
double oracle PPO

J

&

commonly used in practice.




Computing NE in Zero-sum Markov Games

Fictitious play [Brown, 1949]
for k=1,..., K,
it = BR[(1/k) - (73 + ...+ 75)].
5t = BR[(1/(k + 1)) - (71 + ... + m<))].

7%: the policy of the /™ player at the k™ iteration

Computing the best response to the average policy of the opponent.



Computing NE in Zero-sum Markov Games

Asymptotic convergence of fictitious play [Robinson 1951}
Ficitious play indeed converges to Nash equilibrium!

However, how fast?

e inspecting the proof of [Robinson 1951], it requires (1/€)** iterations to
converge to e-Nash equilibrium for a normal-form game with A actions.

e Karlin conjectured in 1959 that this rate can be improved to O(1/¢?).

e Daskalakis and Pan [2014] refute the conjecture, and prove that (1/¢)**
is real in the worst case.



Drawbacks of Direct Combinations

e Algorithms are designed based on black-box usage of single-agent RL,
which does not exploit the detailed structure of MGs.

e Converting a MG into a norm-form game gives a number of action
A= (1/e)™*.

e Finding BR is NOT a easy single-agent RL problem:

e When the min-player deploys a fixed non-Markovian policy, the game is
NOT an MDP from the perspective of the max-player.
e Existing single-agent RL results do not apply.



Planning in Markov Games

We start with the setting of known transition IP and reward r.
A Nash equilibrium of a MG is a Markov policy.

We define Vi (s), Qj (s, a, b) which satisfies the Bellman optimality equation:

Qs (s, a, b) =ru(s, a,b) + Egp,(.|s.2.6) Vir1(s')
Vii(s) = max min Z u(a)v(b)Qx (s, a, b)

HEA 4

:=Nash _Value(Qy (s, -, "))



Planning in Markov Games

A dynamical programming approach to find a Nash equilibrium.

Nash Value Iteration (Nash VI)
Initialize V., 1(s) = 0 for all s.
for h=H,..., 1,
for all (s, a, b),
Qi (s, a, b) < ru(s,a, b) + Eg p,(.|s,2,6) Vir1(s')
for all s
(71,n(:[$), 72,n(+[5)) <= Nash(Qj (s, -, -))
Vi (s) <= (mi,n(-s) X m3,4(:Is), Qu(s, )

Nash VI computes the Nash equilibrium of MGs in poly(H, S, A, B) steps!



