Chapter 10: Multi-agent RL
(Continued)



Reminder: Course Project due next Tuesday

# Team Members Score Agents Last Join

1 Team GO #-s\ #%\ 3000.8 2 2] 1d
\ N

2 Team Q R) 9 2523.0 2 2] 1d
a)

3 Team S 5 2439.3 2 ] 17d
a)

4 Team S_1 5 2347.4 2 @ 22d

5 MilesLiii 5 2019.9 2 2] 6h
2

6 Team Lux 5 1464.8 2 2] 1d



Stochastic/Markov Games

@_,@_» ...... ®_,@

Two-player zero-sum Markov Game (S, A, B, P, r, H) [Shapley 1953].

e S: set of states; A, B: set of actions for the max-player/the min-player.
® Pu(shi1|sh, an, bn): transition probability.
o ry(Sh,an, bn) € [0, 1]: reward for the max-player (loss for the min-player).

e H: horizon/the length of the game.



Planning in Markov Games

A dynamical programming approach to find a Nash equilibrium.

Nash Value Iteration (Nash VI)
Initialize Vi 1(s) = 0 for all s.
for h=H,..., 1,
for all (s, a, b),
Q;(Sa a, b) — rh(sa d, b) + IES’NJP’h('lsﬁ,b) VIT—I—l(S,)
for all s
I (71 1(-|8), 73 4(-|s)) <= Nash(Qj (s, -, ))I NE for Normal-form Game
Vi (s) <= (min(-s) X m34(:|s), Qu (s, )




Today: Online Learning in Unknown MGs
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e
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How do we explore in an unknown Markov
Game to learn an e-Nash strategy?




Online Learning in Unknown MGs

Interaction protocol

Environment samples initial state s;.

for step h=1,... H,
two agents take their own actions (ap, by) simultaneously.
both agents receive their own immediate reward =+r4(sh, an, bn).
environment transitions to the next state spr1 ~ Px(:|Sh, an, bn).



Recall UCBVI for Single-agent RL

Inside iteration n :

Use all previous data to estimate transitions P "

Design reward bonus
Optimism

Optimistic planning with learned model: O

Collect a new trajectory by executing 7" in the real world P starting from s,

@ How do we achieve optimism in Two-Player Zero-sum MG?



How do we modify Nash-VI?

A dynamical programming approach to find a Nash equilibrium.

Nash Value Iteration (Nash VI)
Initialize Vi 1(s) = 0 for all s.
for h=H,..., 1,
for all (s, a, b),
Qi (s, a, b) < ru(s,a, b) + Eg p,(.|s,2,6) Vir1(5")
for all s
(71,n(:[8), 72,n(+[5)) <= Nash(Qj (s, -, -))
Vi (s) <= (mi,n(-s) X m3,4(0Is), Qu(s, )



Optimistic Nash-VI

Optimistic Nash VI

for k=1,...,K, Reward bonus:
for h=H, ., 1, ﬂ=0< 1 )
for all (s, a, b), Ni(s,a,b)

ah(57 d, b) — rh(sa a, b) + IEs’N]fl’,,(-|s,a,b)V’7+1 (5,)
Qh(s7 d, b) — rh(s’ a, b) + IEs’rv]f”,,(-|s,a,b)zh+1 (S’) T /B
for all s
|7n(:, :Is) + CCE(Qa(s, -, "), (s, ,-))| CCE instead of NE
Vh(s) — <7Th('7 '|5)7 ah(sa " )>
V() <= (mn(-5-ls), Q, (s, )

execute policy 7, collect samples, and update estimation P.




Coarse Correlated Equilibria

* Coarse Correlated Equilibria (CCE): A joint policy t: S — AXB is a CCE if

max V™7m-1 < V™ and max VT2 > V7%

TI:S—A

* CCE v.s. NE:

T:S—B

* CCE allows correlated polices, e.g. traffic light.

STOP
GO

STOP
(0,0)
(1,0)

GO
(0,1)
(-100,-100)

* CCE is efficiently computable for general-sum games, while NE isn’t.

CCE

CE

Nash



Theoretical Guarantee of Nash-VI

Theorem [Liu, Yu, Bai, Jin 2020]
With high probability, optimistic Nash VI finds an e-Nash equilibrium in
O(H3SAB/€?) episodes.

H: horizon; S: number of states; A, B: number of actions for each player.

Optimistic Nash VI finds e-Nash in polynomial time and samples!



Drawbacks of Nash-V|

Centralized learning: Requires keeping track of Q(s, a, b).

The algorithm can be generalized to the multi-agent setting:

Nash-VI finds an e-CCE with O(poly (S]], 4;)) sample and computational
complexity.

“The Curse of Multi-agent”: [[i=1 4; scaling



The Curse of Multi-agent

* Can we avoid the O(AB) scaling?

Information theoretical lower bound: Q(H>S max{A, B}/¢)

* Observation: Nash-VI requires estimating the Q function with SAB entries,
naturally resulting in the scaling with O(SARB).



The Curse of Multi-agent

* But why can we avoid trying each (s, a, b) tuple at least once?

Global Maximum

~ Local Maximum .




Simpler Setting: Normal-form Game

Each agent runs no-regret algorithm for adversarial bandit (e.g. EXP3)
independently.

sl

-
l—«o
; pt, Lt) gnelﬂ ) < poly(A)T

t:1

e two-player zero-sum games: (IEtNUnif(T)ugl)) X (IEtNUnif(T),ugz)) — Nash.

e sample complexity scales with O(A + B).

Unfortunately, cannot run no-regret algorithm in MGs (recall from last lecture).



V-Learning

V-learning [Bai, Jin, Yu, 2020] [Jin, Liu, Wang, Yu, 2021]
for k=1,..., K, receive si,
forstep h=1,..., H,
take action ap ~ mp(-|sn), observe reward r, and next state sp;1.
= Nh(Sh) — Nh(Sh) + 1.
Vi(sh) < (1 — at) Vi(sk) + ai(rn + Viari(snt1) + Be).
7Th(-|5h) < Adv_Bandit_Update(ah, rn + Vh+1(sh+1))
on the (sp, h)™ adversarial bandit.

e Incremental updates of V instead of Q!

e |s a single-agent algorithm.



Theoretical Guarantee

e Multiagent setting: both agents run V-learning independently.
e Adversarial bandit subroutine: FTRL.

Theorem [Bai, Jin, Yu, 2020]

In two-player zero-sum Markov games, V-learning with FTRL finds e-Nash in
O(H®S max{A, B}/€?) episodes.

V-learning is a decentralized algorithm that achieves optimal O(max{A, B})
sample complexity!



Readily Generalize to Multi-agent MGs

Theorem (CCE & CE) [Song et al. 2021][Jin, Liu, Wang, Yu, 2021]

In general-sum Markov games,

(1) V-learning with FTRL finds e-CCE in O(H®S(max;c[m Ai)/€>) episodes;
(2) V-learning with FTRL _swap finds e-CE in O(H®S(max;c(m Ai)?/€%)
episodes.



Summary of Algorithms

Algorithm Training Main estimand Sample complexity
Nash-VI centralized P,(s’|s, a, b) O(H3SAB/€?)
Nash Q-Learning centralized Q; (s, a, b) O(H3SAB/€?)
V-Learning decentralized Vi (s) O(H?S max{A, B} /€?)

Lower bound

Q(H3S max{A, B} /€?)




Lots of Future Work to be done

* Behavior of Decentralized Algorithmes.
* Policy Gradient for Markov Games?
 Scalable algorithms? (closing theory-practice gap)

* Imperfect Information Markov Games.



