DS 598
Introduction to RL

Xuezhou Zhang

Announcements

* Homework 1 is due this Friday (submit on blackboard).

* Course project is posted.

* First task: Make sure it installs correctly on your computer.

* Pytorch tutorial + project environment installation Helpdesk in the
discussion section next week.

Team Signup So far

e 13 Teams

* 37/39 people

03/19
03/21
03/26
03/28
04/02
04/04
04/09
04/11

Team 1
Team Zero
Team RL
Team Alpha
Team Gamma

Team S

Team Q
Team ZGL

Mao Mao

Seunghwan Hyun

Ayush Sharma

Wai Yuen Cheng

Sahana Kowshik

Xavier Thomas

Jasmine Dong

Team Members
Haotian Shangguan
Osama Dabbousi
Gauravdeep Singh Bindra
Andy Yang

Srishti Jain

Shivacharan oruganti

Yu Liang

Ziye Chen
Zou(Zoey) Yang

Tariq Georges

Ruoxy Jin

Shuhan Wang

Team 2
Team Go
Team Carbon
Team Star
Team Best
Team Terrier Threat

Team Rocket

Zijian Guo
Bargav Jagatha
Zhengyang Shan
Minfeng Qian
Jack Campbell!
Tejaswini S

YuCheng

Team Members

Yichen Song
Akshat G
Yi Liu
Han Li
Carmen Pelayo!

Shreyas S

Mounika
Jasmine Pham
Qiji Zheng
Chenijia Li!
Abhaya Shukla

Project Description

* Goal: build more cities than your
opponents!

* Several components: map, resources,
units

Project Description: Map

e LxLgrid.
* [€]12,16,24,32]
* Resource positions randomly generated.

Project Description: Resources

* Wood (can regrow), Coal, Uranium

Research Points Fuel Value Units Collected
Pre-requisite per Unit per Turn

Resource Type

Wood 0] 1
Coal 50 10

Uranium

Project Description: Actionable Units

* Workers
* Move
* Pillage - Reduce the Road level
* Transfer - Send resource to an adjacent Unit
* Build City
* Carts:

* Move
* Transfer

* Cities:
e Build Worker

e Build Cart
e Research

Project Description: Cooldown

* Every unit has a cooldown after action.
* Units on roads recover faster.

Unit Type Base Cooldown

CityTile 10

Worker 2

Cart 3

Project Description: Day/Night Cycle

e Day: 30 turns Night: 10 turns
 Total: 360 turns = 9 days/nights
* Units burn fuels to survive the night.

Unit Fuel Burn in City Fuel Burn Outside City

CityTile 23 - 5 * number of adjacent friendly CityTiles N/A
Cart 0 10

Worker 0] 4

Finite Horizon MDPs

* Environment resets s, ~ ().
* Forsteph =0,..,H—1
* Agent perform action a;, ~ (- |sp).
* Environment provide sy,,.1 ~ P, (- |sp, an), i = Ry (sy, ap).

H—1
+ Qfunction: Qrr(s,a) = 0,Qf (s,a) =E | ¥ Ry(sp,an)|m
L h=0 i

* Bellman Equation: Q7 (s,a) = Ry (s, m(s)) + Eg wp, (s.n(s)) | @1 (s, 7(s))]

Finite Horizon MDPs

* Everything now depends on
the time step h!

* Your strategy will differ at
start vs. end of the game.

1. Multi-agent
2. Large and Dynamical State/Action Space
3. Long Horizon

\9 Deff%p;vﬁn di

Ablation Study

Agent Gamer Median Gamer Mean Record Mean Clipped Record Mean
DreamerV?2 1.64 11.33 0.36 0.25
No Layer Norm 1.66 5.95 0.38 0.25
No Reward Gradients 1.68 6.18 0.37 0.24
No Discrete Latents 1.08 3.71 0.24 0.19
No KL Balancing 0.84 3.49 0.19 0.16
No Policy Reinforce 0.69 2.74 0.16 0.15

No Image Gradients 0.04 0.31 0.01 0.01

Proper Acknowledgements

* You can use any resources that you can find online, given that you cite
them properly in your presentation as well as your final reports.

Chapter 4: Value-based RL

Recap: Online Reinforcement Learning

e Start by knowing nothing about the environment.
e Gather information while interacting with the environment.

* Gather reward / suffer costs along the way.

Last time: Model-based RL

St+1

St+1

Zt+1

P(z¢11|2e, ay) P(z¢11q|2e, ag)

A Naive model is difficult to learn Latent model: Dreamer, MuZero

However..

* Even with a good model, planning is still difficult.

2 Can we bypass learning the model at all?

Model-based vs. model-free RL

. algorithms that avoid explicitly learning the transition
model.

The RL Ontology

Actor-critic (not covered in this course)

All RL algorithms

<
Model-based Value-based ‘ Policy-based

Value-based RL

 Estimate the Q™ function directly from data.
 Why the Q™ function?

e With a finite action space, one can make decisions directly from the
Q™ function.

7 (s) = argmax Q™ (s, a)

Solve for Q* from data

Recall Value Iteration (VI):

1. Initialize Q' arbitrarily.
2. Fort=1,..T

. Q(i)(S, a) =71(s,a) + V]Es’~P(-|s,a) [H}ﬁX Q(i_l)(s', a/)]
3. Return Q7),

Solve for Q* from data

Given a dataset D = {(s;, a;,7;,s))}/ .. ° F is the function class.
* In the tabular setting, 7 =

{f:SxA - R}
Fitted Q iteration (FQI): * More generally, F can be a
neural network mapping from
(s,a) to R.

1. Initialize Q" arbitrarily. * FQlis actually used in offline RL.

2. Fort=1,..T

+ QW(s,a) = argminfe@ a;) —1; — ymax QU-V (@

3. Return Q(T) Bellman Error
FQI solves for the equation dBE=0.

Recall model-based learning

Given a dataset D = {(s;, a;,7;,5;)}/% ..

& 0 from FQl vs. Q from MBRL?

Model-based RL: N A
@& They are the SAME!i.e. lim Q) = Q.

T — oo

! ~ ~ A~
1. Learn ﬁ(s’ |s,a) = AI,VDSgJZ))' Hint: (V' = 0™, where Q) is from VI in P.

2. ReturnQ = Q5, e.g. via Value Iteration (VI).

FQI is a fake model-free method??

* Q: What's the difference between FQl and MBRL?
* A: Computational/Space complexity.

« MBRL learn and save the model, which lives in [R®*4%>.

* Value-based RL learn and save the Q function, which lives in R>*4.

* |n order to use FQI in online RL, one must store all historical data, of
size (S + A)T, which sometimes dominates the space complexity.

A streaming algorithm: Q-Learning

* At time step ¢,
* Observes transition tuple (s;, a;, 1, s;)
* Q-learning:

¢« QD (s, ap) = QW (sy, ap) + ar(se, ap) (rt +ymax QW (s{,a’) — QW (s, at)>
a

e Recall FQI:

2
e QW (s,a) = argmin rer i—q <f(st, az) — 1y — ymax QW (s, a')>

* Q-learning is taking one gradient step w.r.t. the FQI objective with step size a;(s¢, a;).

When does Q-Learning converge to Q™7
* Theorem: Given M = { S, A, P,r,y}, Q-learning given by the updated rule
QU+ (Seyaz) = QW (st ar) + a(se, ar) <7"t + ymax QW (sp,a’) — Q¥ (St at))

converges w.p. 1 to Q™ if and only if
>Pa(s,a) =0 and YPai(s,a) < oo.

forall (s,a) € SXA.

When does Q-Learning converge to Q™7
* If (s, a) is not visited at step t, then a;(s;,a;) = 0.

* S0). a;(s,a) = co implies that each (s, a) pair is visited infinitely
often.

* ¥ af(s,a) < oo implies that the learning rate must takes a

diminishing rate at least o, (s, a) « 1/\/Nt(s, a) and at most
1/N.(s,a).

When does Q-Learning converge to Q™7

* However, this theorem only works for the tabular setting.

 When # state is large or infinite, you can’t hope to visit each state
infinitely often.

When does Q-Learning not converge to Q*?

* However, this theorem only works for the tabular setting.

 When # state is large or infinite, you can’t hope to visit each state
infinitely often.

* In fact, Q-learning is known to diverge under function approximation.

When does Q-Learning not converge to Q*?

* Q-learning can fail under function approximation:

o@os)

¢(s1) =1 $(sy) =2

Next time..

* The heuristic solution that kinda(?) worked:

 DQN (2013) and its descendants

