DS 598 Introduction to RL

Xuezhou Zhang

Chapter 4: Value-based RL (Continued)

Solve for Q^* from data

Given a dataset D = $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n$.

Fitted Q iteration (FQI)

- 1. Initialize $Q^{(0)}$ arbitrarily.
- 2. For t = 1, ... T

•
$$Q^{(i)}(s, a) = \operatorname{argmin}_{f \in \mathcal{F}} \sum_{i=1}^{n} \left(f(s_i, a_i) - r_i - \gamma \max_{a'} Q^{(i-1)}(s'_i, a') \right)^2$$

3. Return $Q^{(T)}$.

Bellman Error

FQI solves for the equation $\partial BE=0$.

Summary

• FQI requires storing all historical data, which is memory inefficient.

Q-Learning: a streaming algorithm

- At time step *t*,
- Observes transition tuple (s_t, a_t, r_t, s'_t)
- Q-learning:

•
$$Q^{(t+1)}(s_t, a_t) = Q^{(t)}(s_t, a_t) + \alpha_t(s_t, a_t) \left(r_t + \gamma \max_{a'} Q^{(t)}(s'_t, a') - Q^{(t)}(s_t, a_t) \right)$$

• Q-learning is taking one gradient step w.r.t. the FQI objective with step size $\alpha_t(s_t, a_t)$.

Summary

• FQI requires storing all historical data, which is memory inefficient.

Q-learning converges just fine in the tabular setting.

What happens beyond the tabular setting?

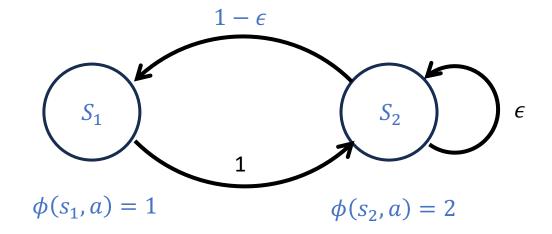
Value-based RL may fail:

1. They might not converge (algorithm-specific).

2. They might not converge to the correct solution (all value-based RL).

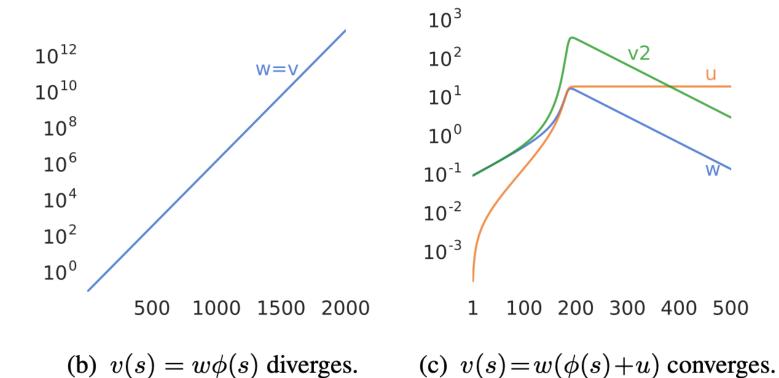
A Failure Example

• MDP: 2 states, 1 action.



• Realizable Linear Function Approximation: $Q(s, a) = \phi(s, a)^T w$.

A Failure Example



v2

The sad story of Bellman-Completeness

- A Q function class F is Bellman-Complete if
- For any $f \in \mathcal{F}$, there exists $g \in \mathcal{F}$, such that

$$g(s,a) = (\mathcal{T}f)(s,a) = r(s,a) + \mathbb{E}_{s' \sim P(s'|s,a)} \left[\max_{a'} f(s',a') \right]$$

- In other words, \mathcal{F} is closed under Bellman operator \mathcal{T} .
- Completeness is **not monotone**, so having a rich function class won't help.

The sad story of Bellman-Completeness

Bellman-complete

not Bellman-complete

The sad story of Bellman-Completeness

• Theorem (Foster et al., 2022). Value-based method can fail without Bellman-Completeness.

• They contrasted an failure example, where any algorithm require at least $|S|^{1/3}$ samples to learn a good policy.

This is an algorithm-independent result.

Summary

• FQI requires storing all historical data, which is memory inefficient.

Q-learning converges just fine in the tabular setting.

- When using function approximation,
 - 1) Value-based RL can converge to the wrong solution (FQI, Q-learning)
 - 2) Value-based RL may not even converge (Q-learning)

Trick #1: Target network (two time-scale update rule)

$$Q^{(t+1)}(s_t, a_t) = Q^{(t)}(s_t, a_t) + \alpha_t(s_t, a_t) \left(r_t + \gamma \max_{a'} Q^{(t)}(s'_t, a') - Q^{(t)}(s_t, a_t) \right)$$

Trick #1: Target network (two time-scale update rule)

$$Q^{(t+1)}(s_t, a_t) = Q^{(t)}(s_t, a_t) + \alpha_t(s_t, a_t) \left(r_t + \gamma \max_{a'} T^{(t)}(s'_t, a') - Q^{(t)}(s_t, a_t) \right)$$

$$T^{(t+1)}(s_t, a_t) = Q^{(t)}(s_t, a_t) + \beta_t(s_t, a_t) \left(Q^{(t)}(s_t, a_t) - T^{(t)}(s_t, a_t) \right)$$

(A slowly updating target network)

Trick #2: Double Q-learning

$$Q^{(t+1)}(s_t, a_t) = Q^{(t)}(s_t, a_t) + \alpha_t(s_t, a_t) \left(r_t + \gamma T^{(t)}(s_t', a') - Q^{(t)}(s_t, a_t) \right)$$

$$T^{(t+1)}(s_t, a_t) = Q^{(t)}(s_t, a_t) + \beta_t(s_t, a_t) \left(Q^{(t)}(s_t, a_t) - T^{(t)}(s_t, a_t) \right)$$

$$a' = \operatorname{argmax}_a Q^{(t)}(s_t', a)$$

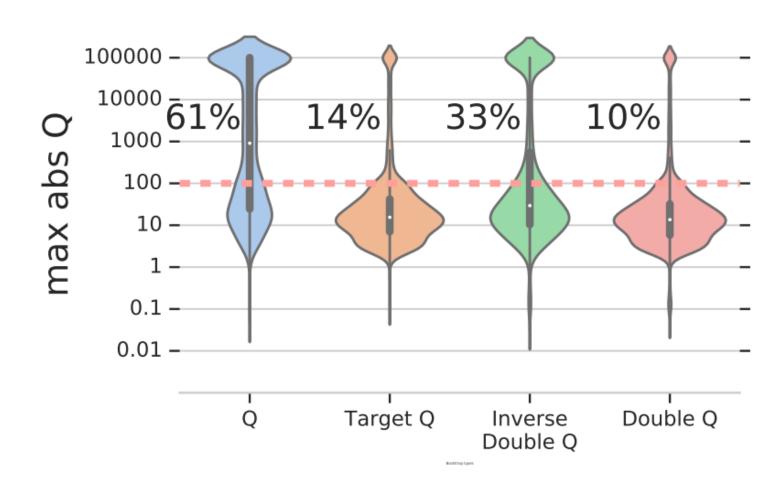
Baseline 3: Inverse double-Q learning

$$Q^{(t+1)}(s_t, a_t) = Q^{(t)}(s_t, a_t) + \alpha_t(s_t, a_t) \left(r_t + \gamma \ Q^{(t)}(s_t', a') - Q^{(t)}(s_t, a_t) \right)$$

$$T^{(t+1)}(s_t, a_t) = Q^{(t)}(s_t, a_t) + \beta_t(s_t, a_t) \left(Q^{(t)}(s_t, a_t) - T^{(t)}(s_t, a_t) \right)$$

$$a' = \operatorname{argmax}_a T^{(t)}(s_t', a)$$

Do they work?



Combine FQI and Q-learning

Maintain a reasonably sized memory of historical data.

a.k.a "replay buffer"

DQN (Mnih et al. 2013)

"classic" deep Q-learning algorithm:

- 1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$, add it to \mathcal{B}
- 2. sample mini-batch $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j\}$ from \mathcal{B} uniformly
- 3. compute $y_j = r_j + \gamma \max_{\mathbf{a}'_i} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$ using target network $Q_{\phi'}$
- 4. $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{j}, \mathbf{a}_{j})(Q_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j}) y_{j})$
- 5. update ϕ' : copy ϕ every N steps

Double-DQN: $a'_j = \operatorname{argmax}_a Q_{\phi}(s'_j, a)$

Multi-step Return (bias/variance trade-off)

Vanilla Q-learning (single-step return):

$$Q^{(t+1)}(s_t, a_t) = Q^{(t)}(s_t, a_t) + \alpha_t \left(r_t + \gamma \max_{a'} Q^{(t)}(s'_t, a') - Q^{(t)}(s_t, a_t) \right)$$

• Q-learning with multi-step return:

$$Q^{(t+1)}(s_{h}, a_{h}) = Q^{(t)}(s_{h}, a_{h}) + \alpha_{t} \left(r_{h} + \gamma r_{h+1} \dots + \gamma^{\tau} r_{h+\tau} + \gamma^{\tau+1} \max_{a'} Q^{(t)}(s'_{h+\tau+1}, a') - Q^{(t)}(s_{t}, a_{t}) \right)$$

$$\xrightarrow{\tau \to \infty} V^{\pi^{(t)}}(s_{h})$$

Multi-step Return

