DS 598
Introduction to RL

Xuezhou Zhang

Chapter 4: Value-based RL
(Continued)

Solve for Q* from data
Given a dataset D = {(s;, a;, 77,5/)}~ .
Fitted Q iteration (FQI)

1. Initialize Q'°) arbitrarily.
2. Fort=1,..T

3. Return Q(T) Bellman Error
FQI solves for the equation dBE=0.

Summary

* FQIl requires storing all historical data, which is memory inefficient.

Q-Learning: a streaming algorithm

* At time step ¢,
* Observes transition tuple (s;, a;, 1, s;)
* Q-learning:

» QU (s ap) = QW (sy, ap) + a(se, ap) (Tt +ymax QY (s;,a") — (s, at)>
a

* Q-learning is taking one gradient step w.r.t. the FQI objective with step size
ar (St at)-

Summary

* FQIl requires storing all historical data, which is memory inefficient.

* Q-learning converges just fine in the tabular setting.

What happens beyond the tabular setting?

 Value-based RL may fail:
1. They might not converge (algorithm-specific).

2. They might not converge to the correct solution (all value-based RL).

A Failure Example

* MIDP: 2 states, 1 action.

o@os)

¢(s,a) =1 d(s,,a) =2

* Realizable Linear Function Approximation: Q(s,a) = ¢(s,a)'w

A Failure Example

103
10*2 102 V2
W=V

1010 10!

8
10 10°
10° 10 W

4
102 1072
10

. 1073
10

500 1000 1500 2000 1 100 200 300 400 500

(b) v(s) = we(s) diverges. (c) v(s)=w(¢(s)+u) converges.

The sad story of Bellman-Completeness

* A Q function class F is Bellman-Complete if
* Forany [€ F, there exists g € F, such that

9(s,a) = (Tf)(s,a) = r(s,a) + Eg_p(s/is.a) [rrlla,lx f(s', a’)]

* In other words, F is closed under Bellman operator J'.

 Completeness is not monotone, so having a rich function class won’t
help.

The sad story of Bellman-Completeness

(a) (b)

Bellman-complete not Bellman-complete

The sad story of

* Theorem (Foster et al., 2022). Value-based method can fail without
Bellman-Completeness.

* They contrasted an failure example, where any algorithm require at
least |S|'/ samples to learn a good policy.

* This is an algorithm-independent result.

Foster et al. Offline Reinforcement Learning: Fundamental Barriers for Value Function Approximation. 2022.

Summary

* FQIl requires storing all historical data, which is memory inefficient.
* Q-learning converges just fine in the tabular setting.

 When using function approximation,
1) Value-based RL can converge to the (FQI, Q-learning)
2) Value-based RL may (Q-learning)

Can we (at least) make Q-learning converge’

* Trick #1: Target network (two time-scale update rule)

Q(t+1) (St) at) — Q(t) (St) at) T at(stl at) (rt + yma,X Q(t) (S£J a’) T Q(t) (St) at))
a

Can we (at least) make Q-learning converge’

* Trick #1: Target network (two time-scale update rule)
Q(Hl) (St ap) = Q(t) (St,ar) + ar(se, az) (Tt + ymax T® (si,a’) — Q(t) (St, at))
a

T+ (st,ae) = Q(t) (st,ar) + Be(se ar) (Q(t) (st,ae) — T® (St at))

(A slowly updating target network)

Can we (at least) make Q-learning converge’
* Trick #2: Double Q-learning
Q(Hl) (St ar) = Q(t) (St,ar) + ag(sg, ar) (Tt Ty T® (spa’) — Q(t) (St at))

T+ (st,ae) = Q(t) (st,ar) + Be(se ar) (Q(t) (st ae) — T® (St at))

a' = argmax, QW (s}, a)

Can we (at least) make Q-learning converge’

* Baseline 3: Inverse double-Q learning
Q(Hl) (S, at) = Q(t) (St,ar) + ag(se, ar) (Tt Ty Q(t) (s¢a’) — Q(t) (St at))

T+ (st,ae) = Q(t) (st,ar) + Be(se ar) (Q(t) (st ae) — T® (St at))

a' = argmax, T (s/, a)

Do they work?

100000 -
%819 14%| 33%| 10%
1000 -
100 -
10 -
]_ —_
0.1 -
0.01 -

max abs Q

| | | |
Q Target Q Inverse Double Q
Double Q

Combine FQl and Q-learning

* Maintain a reasonably sized memory of historical data.

* a.k.a “replay buffer”

DQN (Mnih et al. 2013)

“classic” deep Q-learning algorithm:

= 1. take some action a; and observe (s;,a;,s;,r;), add it to B

2. sample mini-batch {s;,a;,s’, r;} from B uniformly

3. compute y; = 'rj -+ fyﬁl"@sxqg~ Q¢z() using target network @)y
4. ¢ < ¢ — OéZ] T = (s5,a5)(Qy(ss,a5) — yj)

‘5. update ¢@': copy ¢ every N steps

Double-DQN: a; = argmax,Q (S]’ a)

Multi-step Return (bias/variance trade-off)
* Vanilla Q-learning (single-step return):
QU V(s ar) = QW (s, ap) + ay (Tt + ymax QW (st,a") — QW(sy, at))

* Q-learning with multi-step return:

Q(Hl) (sp,ap) = Q(t) (s, ap) + a; (Th + VT4t et Y T VT+1H(115}X Q(t) (Share1, @) — Q(t) (st at))

T— 00
— (Sn)

Multi-step Return

3
o 80 - -
-
S
60 - -
Gc) Inverse
o Double Q
@ 40- -
2
2
%: 20 _Met Q -
v Double Q —
I | |
1 3 10
steps steps steps

(@) Multi-step returns

