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Chapter 5: Policy-based RL
(continued)



The algorithm

1. Initialize 6,

2. Foriterationt=0,...,T
1) Runmg and collect trajectories 74, ..., 7,
2) Estimate the PG by

n
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3) DoSGD update 6;,; =0, + a;g;



n

The a‘gOchm g = %Z Vglogﬂ(ai;h|5i;h)R<Ti)
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A couple of techniques to improve PG estimation:
: variance reduction

. off-policy learning of value function
. off-policy estimation of PG
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: handles continuous and deterministic policy



An Optimization Viewpoint

e Numerical Optimization.
Jorge Nocedal , Stephen J.
Wright (2006)

Numerical
Optimization

* Highly recommended!

* Pillars of ML: statistics, calculus
and linear algebra, numerical
optimization.

&) Springer




An Optimization Viewpoint

Given a function f(x), find argmin,, f(x).

* Approximation-based Optimization * Example 1:
1. Starting at some x. e () = Flxe) + (x —x)7 -
2. For iteration k=0,2, ... ) Vf(xg) + 2—;{ || — xkl‘z

1) Find alocal approximation f,

that can be minimized with
less effort than [ itself. * Xpy1 = X — G V().

2) SetXyyq = argmingey fi (x).
* This is gradient descent!



An Optimization Viewpoint

* Approximation-based Optimization
1. Starting at some Xx,.

2. Foriteration k=0,2, ...

1) Find a local approximation fk
that can be minimized with
less effort than | itself.

2) Setxp,; = argmin,ey fk (x).

Given a function f(x), find argmin,, f(x).

* Example 2:

 Fe) = Fr) + (=107
Vf(xg) + > (x — xx) "Hy (x — x,)

* where Hj, is the Hessian of [ at x,.

* X1 = X — Hi "V (x).

* This is the Newton’s method!



An Optimization Viewpoint

Given a function f(x), find argmin,, f(x).

* Problem?

1. Starting at some Xx,.

2. Foriteration k=0,2, ... . fk will be a poor approximation

1) Find a local approximation fk of f far away from x,,.
that can be minimized with
less effort than [ .|tself. ) + Solution: don’t go too far.
2) Setxp,q = argminyey fx(x).



An Optimization Viewpoint

Given a function f(x), find argmin,, f(x).

* Design Choices:

1. Starting at some xj. 1. What is fk?
2. For |’Ferat|on k=0,2, ... | o 2. Whatis U, ?
1) Find a local approximation f,. _

containing x;, e.g.
U, = {x: [ —xkl‘k < Ak}

3) Setxp,q = argmingey, fi(x).
4) Sanity check: if [ (x,,1) —
[ (x;) is sufficiently large,
continue; else, set A, < €, A,
and loop back to step 2.



An Optimization Viewpoint

* Trust-region Method
1. Starting at some xj.
2. Foriteration k=0,2, ...

1)
2)

Find a local approximation fk.
Choose a trust region U,
containing x;, e.g.

U, = {x: Hx—xkl‘k < Ak}

Set xj 41 = argmingey, fr (x).

Sanity check: if [ (x,,.1) —

[ (x;) is sufficiently large,
continue; else, set A, < €, A,
and loop back to step 2.

Given a function f(x), find argmin,, f(x).

* Example 1:

* fo() = flr) + (x —x,)7 -
Vf(xx)
e U, = {x: %Hx—xkli < 52}

Vf(xg)
IV F Cel|
* Normalized gradient descent.

* Xg41 = Xg — O

e Better distance metric?



An Optimization Viewpoint

Given a function f(x), find argmin,, f(x).

* Trust-region Method e Better distance metric?
1. Starting at some xj. e Linear model
2. Foriteration k=0,2, ... 1 -
1) Find a local approximation f,. U = {x: E(x = %) Fe(x —x;) <
2) Choose a trust region U, 52}
containing x;, e.g.
Ukz{x:‘lx—xkl‘RSAk} * Xk+1 :xk_Dka(xkl)-
3) Setxyiq = argmingey, fi(x). *where D, = = of _gxk) .
4) Sanity check: if f(x,,.1) — VI G~ (i) Vi)
f (x;,) is sufficiently large, * Damped Newton’s Method (F;, =

continue; else, set A, < €, A, Hp)
and loop back to step 2.



Back to RL
* f(mg) = Ep, [ X0 V" 7(sh, an)]

* Design Choices:

1. Whatis f,.?

2. Whatis U,?

3. How to do sanity check?



RL as Optimization
* f(mg) = Ery[Xh=o V" 7(Sn, an)]

* Design Choices:

1. Whatis f,.? How do we approximate f (7,) with data from 7, ?

* Performance Difference Lemma:

f(m) = f(') = Eg q_qr[A" (s5,a)]



RL as Optimization
* f(mg) = Ery[Xh=o V" 7(Sn, an)]

* Design Choices:

1. Whatis f,.? How do we approximate f (7,) with data from 7, ?

f(mg) = f(mr) + Eg goar [A™" (s, a)]

~(f(m D n mo(als) "k(s,a




RL as Optimization

* f(mg) = Epy[2n=o0 Y r(sp, ap)]

* Design Choices:
1. Whatis f,.? How do we approximate f (7,) with data from 7. ?

f(ﬂe) — f(nk) + [Es,a~d”k [Zigz:g ATk (s, a)]
f(1ry) satisifies f () = f(8,,) and
Vo f(ﬂk) = Vg f(my) = Egg~amk [Vglog i (als) - A™«(s,a)]




RL as Optimization

* f(mg) = Epy[2n=o0 Y r(sp, ap)]

* Design Choices:
1. Whatis f,.? How do we approximate f (7,) with data from 7. ?

fg) = F(me) + By gqme |22 AT(s, )|

mk(als)

First-order Taylor expansion at 6,

fo = fr) + (0 —6,)7 - V@f(ﬂek)



RL as Optimization

* f(mg) = Epy[2n=o0 Y r(sp, ap)]

Can we make smarter choices?

* Design Choices:

1. Whatiis fk? fk - f(T[k) + (0 — Hk)T : V@f(ﬂgk)
: _In. 11 _ ’ 2

2. Whatis U,? U, = {9. . HH HRHZ <90 }

3. How to do sanity check? No sanity check.

Vi(Ok)
IZCMIN

* Then,wegetf,,, =60, +0 which is exactly Vanilla PG!



RL as Optimization
* f(me) = Eny[Xr=ov" r(sn, ap)]

* Design Choices:
2. What is a better U, ? Or rather, what metric should we use?

* Policies mg(a|s) are probability distributions.
* Different 8 can map to the same policy.
* A metric in the probability space?



Kullback—Leibler (KL) divergence

p(x))

* Dy (Plg) = Ey-plog (55

* Ingeneral, Dy, (p|lq) # Dy, (q|p), soit’s not a metric.

* Dk (plg) = 0.
*p = qiff Dg,(plq) = Dk (qlp) = 0.

e Example: If o = N (uy,0l), g = N (u,, al),
2
* then Dy, (plq) = |1y —HZHZ/UZ-



Kullback—Leibler (KL) divergence

x~ﬂk(X)).

x~1g(x)

* Dy (my|mg) = [Ex~nk10g(

* Fact: The Fisher Information Matrix
* VoDgp(my|mg)lg=g, =0

* Hy Dy (7 |T9) | 9=0, @108 m(als)Vglog my (a|5®

* Second-order Taylor expansion at 6y,:
* Dy (i |mp) = (6 — 0;) " Fi (0 — 6)




Putting it together

* O41 = argmaxgey, f () + (0 — 6,)7 - Vo f (1g, ),
 where Uy, = {6: = (6 — 0,)TF (0 — 6)) < 52},

* This implies 6,,., = 0,, — D,./Vof(6,,),
SF~1(xp)
VTG F 0 VECxy)

* where D, =

- Again, Fy, = Eyr, [Vglog my (als)Volog my(als)T].
 This is the Trusted-region Policy Optimization (TRPO) algorithm.



Natural Policy Gradient

* An earlier appearance of an update rule similar to TRPO is called
Natural Policy Gradient (NPG).

* TRPO: 011 = 0 — Dy Vg f (6y)
SF~1(xg)

VVFT G F=1 () VE(xi)

* NPG: )11 = 6 — aFy Vo f(6k)

* where D), =

* NPG makes a less careful choice on the step-size of the update.



RL as Optimization

 f(9) = F(m) + By gqme [F2md AT(s, )|

mr(als)

* An objective-specific U, ?

» |dea: we don’t want to overfit too much on f.

* Proximal Policy Optimization (PPO):

sign <(7‘L’9(a|5) — 1) ATk (s, a)) <e€

Tr(AlS)



RL as Optimization

+ f(mg) = fmi) + B gmgme [ S22 A™(s, )

i (als)

* Proximal Policy Optimization (PPO):

(ﬂe (als)

my(als)

— 1) sign(A™k(s,a)) < €

* Instead of enforce it as a constraint, PPO modifies the objective as

F(8) = f(10) + By e [min (ne (als) A7 (s, ), clip. (ne (als)> ATk (s, a)>]

i (als) mi(als)




Summary

* REINFORCE:

» 1st-order Taylor approximation of the objective.
* Trusted region with Euclidean distance.

» 1st-order Taylor approximation of the objective.
* Trusted region with KL divergence.

» 1st-order Taylor approximation of the objective.
* Trusted region with improvement constraintsin f.



