DS 598 Introduction to RL

Xuezhou Zhang

Chapter 7: Exploration (Modern Challenges)

Existing algorithms are very inefficient..

AlphaZero:

44,000,000 games

Human Pro Player:

~ 50,000 games

Existing algorithms are very inefficient..

1000 times less efficient than human!!

What is exploration?

- 4200 restaurants in Boston.
- Find your favorite one.
- What do you do?

How to quantify exploration efficiency?

- Sample Complexity: how many episodes do you need to find an *∈*optimal policy?
- π is ϵ -optimal if $J(\pi^*) J(\pi) \leq \epsilon$.
- **Regret**: $\sum_{t=1}^{T} J(\pi^*) J(\pi_t)$.
- e.g. how many bad meals do you have to suffer.
- They are interchangeable to some extent (whiteboard).

Multi-armed Bandit – a.k.a. the Boston Restaurant problem

- K restaurants (arms): a_1, \ldots, a_K
- Unknown reward distribution:

• $r_k \sim \nu_k \in \Delta_{[0,1]}$ with mean $\mu_k = \mathbb{E}[r_k]$.

- Optimal arm: $k^* = \operatorname{argmax}_k \mu_k$
- Interactive Learning Process:
- For t = 1, ... T
 - Learner pulls arm $I_t \in \{1, \dots, K\}$.
 - Learner observes i.i.d. reward $r_t \sim v_{I_t}$.

Pure exploration

What are some naïve strategies?

Attempt 1: Uniform Exploration

- Try each restaurant n times. Estimate their reward. Pick the best one.
- Uncertainty Estimation: Hoeffding's Inequality

Given a distribution $\mu \in \Delta([0,1])$, and N i.i.d samples $\{r_i\}_{i=1}^N \sim \mu$, w/ probability at least $1 - \delta$, we have: $\left|\sum_{i=1}^N r_i/N - \mu\right| \leq O\left(\sqrt{\frac{\ln(1/\delta)}{N}}\right)$

- Total sample complexity to find an ϵ -optimal policy: $O(K/\epsilon^2)$
- Already pretty good!

Attempt 1: Uniform Exploration

Can we improve?

Some restaurants are obviously bad, no need to keep trying them!

Attempt 2: Arm Elimination

- Give up those arms that are clearly suboptimal.
- Gap: $\Delta_k = \mu^* \mu_k$
- Q: How many times will each arm be tried?
- A: Roughly $O\left(\frac{1}{\Delta_k^2}\right)$.
- Total sample complexity: $\sum_{\{k \mid \Delta_k \ge \epsilon\}} \frac{1}{\Delta_k^2}$.

Regret Minimization

Minimize the regret of eating bad food.

Attempt 1: Greedy Algorithm

- Try each restaurant once.
- Going to the best restaurant I've been to previously.
- Problem: a good restaurant may give bad experience by chance.
- Missing the best restaurant forever!
- O(T) regret!

Attempt 2: Explore and then Commit

- Do uniform exploration for N rounds per arm.
- Commit to the empirically best arm.
- What's the regret?
- Exploration stage: O(NK)
- Exploitation stage: $O\left(T\sqrt{\frac{1}{N}}\right)$

Attempt 2: Explore and then Commit

- Total regret: $O\left(NK + T\sqrt{\frac{1}{N}}\right)$
- Cauchy Schwarz Inequality:

$$NK + T_{\sqrt{\frac{1}{N}}} \le K^{1/3} T^{2/3}$$

• This is achieved by
$$N^* = \left(\frac{T}{K}\right)^{2/3}$$

Regret Minimization

Can we do better than
$$O(K^{1/3}T^{2/3})$$
?

Yes! Next time!