Midterm Champ agent released.

* Midterm Champion agent released on Piazza.

* Try it out!



Chapter 9: Exploration in
Deep RL



Recap: UVBVI

Forn=1- N:
n—1
1. Set N'(s,a) = 1{(s,d)) = (s,a)},Vs,a
h> %
=1,
2.8et N"(s,a,s") = Y. Y 1{(s}ap.si, ) = (s.a.5)},Vs,a,s’

i=1 h

. s s Nn(S,Cl,S/)
3. Estimate model: P "(s'|s,a) = ———,Vs,a,s
N"(s, a)

/

In(SAHN/6)

4. Plan: 7" = VI( P {r,+ D, }/1>’With by(s,a) = CH\/ N (s, q)

5. Execute " : {sy, Gy, 1y s Spy_1» Q1> Tr— 1 Spy }

* Only work for finite S,A.
e Key insight: reward bonus helps with exploration.



Question Today:

How to perform exploration in deep RL?



Approach 1: Randomization

1. e-greedy (discrete action space):
n(als) = (1 —e)m(als) + €/|A]
2. Gaussian noise (continuous action space):
a=m(s)+ N(0,al)
3. Entropy regularization (often in PG):
H(m) = Eg._z|m(als)logn(als)]
f(m) =](m) — aH ()

* Work to some extend to find locally optimal policy.

* Provably fail in difficult settings, sparse reward, large MDP diameter,
e.g. combination locks.



Approach 2: Pseudo-Counts

e Recall the UCB bonus

In(SAHN/6)
b)(s,a) = cH
N"(s, a)

* A simple generalization is the

* Learning a pseudo-count function: N"(s,a) = n - p™(s, a), where
p"(s,a) is a density function.
* Density estimation can be done in many ways:
e Gaussian Mixture Model

* Tree-based methods
e Diffusion model



Approach 2: Pseudo-Counts

* In the original paper Bellemare et al., (2016), they show that count-
based reward-bonus helps explore more rooms than vanilla DQN.



https://arxiv.org/abs/1606.01868

Approach 2: Pseudo-Counts

* In the original paper Bellemare et al., (2016), they show that count-
based reward-bonus helps explore more rooms than vanilla DQN.

No bonus With bonus

Figure 3: “Known world” of a DQN agent trained for 50 million frames with (right) and without
(left) count-based exploration bonuses, in MONTEZUMA’S REVENGE.


https://arxiv.org/pdf/1606.01868.pdf

Approach 2: Pseudo-Counts

* Another variance of pseudo-counts uses hash functions:
¢:S -7

* i.e. mapping states to a finite set of clusters, e.g. SimHash
#(s) = sgn(Ag(s)) € {-1,1}"
* Then, one can count the # of occurrence of clusters instead of states.



https://arxiv.org/pdf/1611.04717.pdf

Approach 2: Pseudo-Counts

* However, a predefined hash map may not work well in representing
the similarity between states in particular environments.

* Solution? Learned hash map.

* Approach in the original paper: auto-encoder (AE)

downsample \ x
\R eS8 SN\
A EIEE ) (60| e |

b(-
96 X 5 X 5 5(1; 96 X 5 X 5
L 96 x 11 x 11 96 x 10 x 10 _—
| 96 x 24 x 24 1024 9400 96 x 24 x 24 I |
1 x 52 % 52 1 x52x52 64 x 52 x 52

Figure 1: The autoencoder (AE) architecture for ALE; the solid block represents the dense sigmoidal
binary code layer, after which noise U (—a, a) is injected.



Approach 2: Pseudo-Counts

* Recall in model-based RL (e.g. DreamerV2), we learn a latent world
model in the latent state space Z.

* Potentially can use the counts in this discrete latent state to calculate
reward bonus.



Approach 2: Pseudo-Counts

* What'’s the problem with count-based reward?

* The UCB bonus is designhed to upper-bound the
on each (s,a) pairs.

* [t only happens to scale with \/1/1\/(5, a) in tabular MDPs.

* Inverse count may not be a good indicator of uncertainty in general.



Approach 3: Uncertainty Estimation
* Can we directly estimate the uncertainty in transition estimation?

* How about doing it directly? Learn a transition function f (a.k.a.
model-based RL)
2

b(se,ar) = ||f(se,ar) — Spsq

* Recall the problem with model-based RL: learning the raw input
transition is hard.

* Instead one can learn the latent transition.
e Is || - ||* the correct loss?



Approach 3: Uncertainty Estimation

e What if | want to do model-free RL and not learn a transition function?

* How about using the prediction error for something else, such as... a
random target function?



Approach 3: Uncertainty Estimation
* Random Network Distillation (RND)
* Initialize some random target network : S — R?

* For any visited state s;, observes y; = [ (s;).

i X 2
* Run regression and learn f to minimize ), “f(st) — ytH
2

A 2
* Then, define the reward bonus as b(s) = “f(s) — f(s)” .
2


https://arxiv.org/abs/1810.12894

Approach 3: Uncertainty Estimation

 Random Network Distillation (RND)

* It’s surprising that RND works given it’s predicting something
irrelevant to the main task.

* However, it actually have merits, at least in the tabular setting.

* When doing regression in finite domains, the regression loss on s

indeed scales / ! :
N(s)



https://arxiv.org/abs/1810.12894

Drawbacks of reward bonus in deep RL

* There are some common drawbacks when using reward bonus with
deep RL:

1. Function approximation is slow to catch up.

2. Exploration bonus is , incurring non-stability in
training.

3. Requires large memory buffer.



Drawbacks of reward bonus in deep RL

1. Intrinsic reward (green) is distributed 2. An IM algorithm might start by exploring
throughout the environment (purple) a nearby area with intrinsic reward

A

Start
3. By chance, it may explore 4. Exploration fails to rediscover
another equally profitable area promising areas it has detached from




Approach 4: Direct Exploration

* Go-Explore (Ecoffet, et al., 2019)

Phase 1: explore until solved Phase 2: robustify
(if necessary)

Select state Go to state Explore Update Run imitation learning
from archive from state archive Jow o on best trajectory

* Maintain a selective archive of the promising states, e.g. states with
high reward bonus

* Maintain a set of trajectories/goal-conditioned policies that are
capable of reaching these promising states.


https://arxiv.org/abs/1901.10995

Approach 4: Direct Exploration

Go-Explore
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