Chapter 10: Multi-agent RL (Continued)

Reminder: Course Project due next Tuesday

#	Team	Members	Score	Agents	Last	Join
1	Team GO		3000.8	2 💽	1d	
2	Team Q		2523.0	2 🕨	1d	
3	Team S		2439.3	2 💽	17d	
4	Team S_1		2347.4	2 🕨	22d	
5	MilesLiiii		2019.9	2 🕨	6h	
6	Team Lux		1464.8	2 💽	1d	

Stochastic/Markov Games

Two-player zero-sum Markov Game $(S, A, B, \mathbb{P}, r, H)$ [Shapley 1953].

- S: set of states; A, B: set of actions for the max-player/the min-player.
- $\mathbb{P}_h(s_{h+1}|s_h, a_h, b_h)$: transition probability.
- $r_h(s_h, a_h, b_h) \in [0, 1]$: reward for the max-player (loss for the min-player).
- *H*: horizon/the length of the game.

Planning in Markov Games

A dynamical programming approach to find a Nash equilibrium.

```
Nash Value Iteration (Nash VI)

Initialize V_{H+1}^*(s) = 0 for all s.

for h = H, ..., 1,

for all (s, a, b),

Q_h^*(s, a, b) \leftarrow r_h(s, a, b) + \mathbb{E}_{s' \sim \mathbb{P}_h(\cdot|s, a, b)} V_{h+1}^*(s')

for all s

(\pi_{1,h}^*(\cdot|s), \pi_{2,h}^*(\cdot|s)) \leftarrow \operatorname{Nash}(Q_h^*(s, \cdot, \cdot))) NE for Normal-form Game

V_h^*(s) \leftarrow \langle \pi_{1,h}^*(\cdot|s) \times \pi_{2,h}^*(\cdot|s), Q_h^*(s, \cdot, \cdot) \rangle
```

Today: Online Learning in Unknown MGs

How do we explore in an unknown Markov Game to learn an ϵ -Nash strategy?

Online Learning in Unknown MGs

Interaction protocol

Environment samples initial state s_1 .

for step h = 1, ..., H,

two agents take their own actions (a_h, b_h) simultaneously.

both agents receive their own immediate reward $\pm r_h(s_h, a_h, b_h)$.

environment transitions to the next state $s_{h+1} \sim \mathbb{P}_h(\cdot|s_h, a_h, b_h)$.

Recall UCBVI for Single-agent RL

Inside iteration *n* :

Use all previous data to estimate transitions \widehat{P}^n

Design reward bonus $b_h^n(s, a), \forall s, a, h$ Optimism Optimistic planning with learned model: $\pi^n = \text{Value-Iter}\left(\widehat{P}^n, \{r_h + b_h^n\}_{h=1}^{H-1}\right)$

Collect a new trajectory by executing π^n in the real world P starting from s_0

Bow do we achieve optimism in Two-Player Zero-sum MG?

How do we modify Nash-VI?

A dynamical programming approach to find a Nash equilibrium.

```
Nash Value Iteration (Nash VI)

Initialize V_{H+1}^*(s) = 0 for all s.

for h = H, ..., 1,

for all (s, a, b),

Q_h^*(s, a, b) \leftarrow r_h(s, a, b) + \mathbb{E}_{s' \sim \mathbb{P}_h(\cdot|s, a, b)} V_{h+1}^*(s')

for all s

(\pi_{1,h}^*(\cdot|s), \pi_{2,h}^*(\cdot|s)) \leftarrow \operatorname{Nash}(Q_h^*(s, \cdot, \cdot))

V_h^*(s) \leftarrow \langle \pi_{1,h}^*(\cdot|s) \times \pi_{2,h}^*(\cdot|s), Q_h^*(s, \cdot, \cdot) \rangle
```

Optimistic Nash-VI

Coarse Correlated Equilibria

• Coarse Correlated Equilibria (CCE): A joint policy $\pi: S \to A \times B$ is a CCE if

$$\max_{\pi':S \to A} V^{\pi',\pi_{-1}} \le V^{\pi} \text{ and } \max_{\pi':S \to B} V^{\pi_{-2},\pi'} \ge V^{\pi}$$

- CCE v.s. NE:
 - CCE allows correlated polices, e.g. traffic light.

	STOP	GO
STOP	(0,0)	(0,1)
GO	(1,0)	(-100,-100)

CCE

CE

Nash

• CCE is efficiently computable for general-sum games, while NE isn't.

Theoretical Guarantee of Nash-VI

Theorem [Liu, Yu, Bai, Jin 2020] With high probability, optimistic Nash VI finds an ϵ -Nash equilibrium in $\tilde{O}(H^3SAB/\epsilon^2)$ episodes.

H: horizon; *S*: number of states; A, B: number of actions for each player.

Optimistic Nash VI finds ϵ -Nash in polynomial time and samples!

Drawbacks of Nash-VI

- Centralized learning: Requires keeping track of Q(s, a, b).
- The algorithm can be generalized to the multi-agent setting:
- Nash-VI finds an ϵ -CCE with $O(\operatorname{poly}(S \prod_{i=1}^{n} A_i))$ sample and computational complexity.
- "The Curse of Multi-agent": $\prod_{i=1}^{n} A_i$ scaling

The Curse of Multi-agent

• Can we avoid the O(AB) scaling?

Information theoretical lower bound: $\Omega(H^3S \max\{A, B\}/\epsilon^2)$

• Observation: Nash-VI requires estimating the Q function with SAB entries, naturally resulting in the scaling with O(SAB).

The Curse of Multi-agent

• But why can we avoid trying each (*s*, *a*, *b*) tuple at least once?

Simpler Setting: Normal-form Game

Each agent runs no-regret algorithm for adversarial bandit (e.g. EXP3) independently.

$$\sum_{t=1}^{T} \langle \mu_t, \ell_t \rangle - \min_{a \in \mathcal{A}} \sum_{t=1}^{T} \langle a, \ell_t \rangle \leq \mathsf{poly}(A) T^{1-\alpha}.$$

- two-player zero-sum games: $(\mathbb{E}_{t \sim \text{Unif}(\mathcal{T})} \mu_t^{(1)}) \times (\mathbb{E}_{t \sim \text{Unif}(\mathcal{T})} \mu_t^{(2)}) \rightarrow \text{Nash.}$
- sample complexity scales with $\tilde{\mathcal{O}}(A+B)$.

Unfortunately, cannot run no-regret algorithm in MGs (recall from last lecture).

V-Learning

V-learning [Bai, Jin, Yu, 2020] [Jin, Liu, Wang, Yu, 2021] for k = 1, ..., K, receive s_1 , for step h = 1, ..., H, take action $a_h \sim \pi_h(\cdot|s_h)$, observe reward r_h and next state s_{h+1} . $t = N_h(s_h) \leftarrow N_h(s_h) + 1$. $V_h(s_h) \leftarrow (1 - \alpha_t)V_h(s_h) + \alpha_t(r_h + V_{h+1}(s_{h+1}) + \beta_t)$. $\pi_h(\cdot|s_h) \leftarrow \text{Adv}_{\text{Bandit}} \text{Update}(a_h, r_h + V_{h+1}(s_{h+1}))$ on the $(s_h, h)^{\text{th}}$ adversarial bandit.

- Incremental updates of V instead of Q!
- Is a single-agent algorithm.

Theoretical Guarantee

- Multiagent setting: both agents run V-learning independently.
- Adversarial bandit subroutine: FTRL.

Theorem [Bai, Jin, Yu, 2020]

In two-player zero-sum Markov games, V-learning with FTRL finds ϵ -Nash in $\tilde{O}(H^5S \max\{A, B\}/\epsilon^2)$ episodes.

V-learning is a decentralized algorithm that achieves optimal $O(\max\{A, B\})$ sample complexity!

Readily Generalize to Multi-agent MGs

Theorem (CCE & CE) [Song et al. 2021][Jin, Liu, Wang, Yu, 2021] In general-sum Markov games,

(1) V-learning with FTRL finds ϵ -CCE in $\tilde{O}(H^5S(\max_{i \in [m]} A_i)/\epsilon^2)$ episodes; (2) V-learning with FTRL_swap finds ϵ -CE in $\tilde{O}(H^5S(\max_{i \in [m]} A_i)^2/\epsilon^2)$ episodes.

Summary of Algorithms

Algorithm	Training	Main estimand	Sample complexity
Nash-VI	centralized	$\mathbb{P}_h(s' s,a,b)$	$ ilde{\mathcal{O}}(H^3SAB/\epsilon^2)$
Nash Q-Learning	centralized	$Q_h^\star(s,a,b)$	$ ilde{\mathcal{O}}(H^5SAB/\epsilon^2)$
V-Learning	decentralized	$V_h^{\star}(s)$	$ ilde{\mathcal{O}}(H^5S\max\{A,B\}/\epsilon^2)$
Lower bound	-	-	$\Omega(H^3S\max\{A,B\}/\epsilon^2)$

Lots of Future Work to be done

- Behavior of Decentralized Algorithms.
- Policy Gradient for Markov Games?
- Scalable algorithms? (closing theory-practice gap)
- Imperfect Information Markov Games.