
DS 598
Introduction to RL

Xuezhou Zhang

Announcements

• Homework 1 is due this Friday (submit on blackboard).

• Course project is posted.
• First task: Make sure it installs correctly on your computer.

• Pytorch tutorial + project environment installation Helpdesk in the
discussion section next week.

Team Signup So far

Team 1 Team Members Team 2 Team Members

03/19 Team Zero Mao Mao Haotian Shangguan Ziye Chen Team Go Zijian Guo Yichen Song

03/21 Team RL Seunghwan Hyun Osama Dabbousi Zou(Zoey) Yang Team Carbon Bargav Jagatha Akshat G Mounika

03/26 Team Alpha Ayush Sharma Gauravdeep Singh Bindra Team Star Zhengyang Shan Yi Liu Jasmine Pham

03/28 Team Gamma Wai Yuen Cheng Andy Yang Tariq Georges Team Best Minfeng Qian Han Li Qiji Zheng

04/02 Team S Sahana Kowshik Srishti Jain Ruoxy Jin Team Terrier Threat Jack Campbell! Carmen Pelayo! Chenjia Li!

04/04 Team Rocket Tejaswini S Shreyas S Abhaya Shukla

04/09 Team Q Xavier Thomas Shivacharan oruganti YuCheng

04/11 Team ZGL Jasmine Dong Yu Liang Shuhan Wang

• 13 Teams
• 37/39 people

Project Description

• Goal: build more cities than your
opponents!
• Several components: map, resources,

units

Project Description: Map

• L x L grid.
• 𝐿 ∈ [12,16,24,32]
• Resource positions randomly generated.

Project Description: Resources

• Wood (can regrow), Coal, Uranium

Project Description: Actionable Units

• Workers
• Move
• Pillage - Reduce the Road level
• Transfer - Send resource to an adjacent Unit
• Build City

• Carts:
• Move
• Transfer

• Cities:
• Build Worker
• Build Cart
• Research

Project Description: Cooldown

• Every unit has a cooldown after action.
• Units on roads recover faster.

Project Description: Day/Night Cycle

• Day: 30 turns Night: 10 turns
• Total: 360 turns = 9 days/nights
• Units burn fuels to survive the night.

Finite Horizon MDPs

• Environment resets 𝑠! ∼ 𝜇(⋅).
• For step ℎ = 0,… ,𝐻 − 1
• Agent perform action 𝑎! ∼ 𝜋(⋅ |𝑠!).
• Environment provide 𝑠!"# ∼ 𝑃! ⋅ 𝑠!, 𝑎! , 𝑟! = 𝑅!(𝑠!, 𝑎!).

• Q function:

• Bellman Equation:
<latexit sha1_base64="dMlxF4wLn2J6Wldyq68D0hctung=">AAAC0XicfVFLb9QwEHZSHiU8ui1HLhYrtBtarRJUtb1UqnhIXIAtsG2ldYgcr5NY6zxkT1BXIRLiyq/jyC/hirNZEH2IkSx9/r5vPOOZqJRCg+f9tOy1Gzdv3V6/49y9d//BRm9z60QXlWJ8wgpZqLOIai5FzicgQPKzUnGaRZKfRvMXrX76mSstivwjLEoeZDTJRSwYBUOFvfnxJ1KKMB3qHeriQ/x+CQ011K6LtzHJKKRRVL9qwloPiBYZHhsLYbMCvvw1NkTyGKa4e6xOt/1mqAedOnBdokSSQhD2+t7IWwa+CvwV6KNVjMNN6y2ZFazKeA5MUq2nvldCUFMFgkneOKTSvKRsThM+NTCnGddBvZxKg58YZobjQpmTA16y/2bUNNN6kUXG2X5SX9Za8jptWkF8ENQiLyvgOesKxZXEUOB2xHgmFGcgFwZQpoTpFbOUKsrALOJClfOu1WsrO+QlN59W/I25vSu5olCopzWhKsnoeWOGkJCdFv3PKPI/RoMcx2zAvzzvq+Dk2cjfG+0d7/aPnq92sY4eocdoiHy0j47QazRGE8TQD/TLQpZlf7AX9lf7W2e1rVXOQ3Qh7O+/AYYQ39g=</latexit>

Q⇡
h(s, a) = Rh(s,⇡(s)) + Es0⇠Ph(·|s,⇡(s))

⇥
Q⇡

h+1(s
0,⇡(s0))

⇤

<latexit sha1_base64="isWMfCm8pC+k7H2OeK6H4E/+Gq4=">AAACuXicfVHbbtNAEN2YW2suTcsjLysipBaFyEaoIFWRKi5SXoAGSFsp61rjzdheur5od40auf4wPoUnXuEvWCdBohcx0kpnzpzRzJyNSim08bwfHefGzVu376ytu3fv3X+w0d3cOtRFpThOeCELdRyBRilynBhhJB6XCiGLJB5Fp2/a+tE3VFoU+RczLzHIIMlFLDgYS4Xdz+NwtK37sDP0+nR8wkoRpoucDinLwKRRVL9rmMTYTJmusrBOh15zUo+e+c2nVhqmfQjTHXpuW5kSSWqCsNvzBt4i6FXgr0CPrOIg3Ox8YLOCVxnmhkvQeup7pQlqUEZwiY3LKo0l8FNIcGphDhnqoF5c39AnlpnRuFD25YYu2H87asi0nmeRVbYH6cu1lryuNq1M/CqoRV5WBnO+HBRXkpqCtlbSmVDIjZxbAFwJuyvlKSjgxhp+YcrZctVrJ7vsLdqjFb632ccSFZhCPa0ZqCSDs8aakLB+i/4nFPlfoUWua3/Av+z3VXD4fODvDnbHL3r7r1d/sUYekcdkm/jkJdknI3JAJoST7+Qn+UV+O3sOOKnzdSl1Oqueh+RCOPoPmtvZjw==</latexit>

QH(s, a) = 0, Q⇡

h
(s, a) = E

"
H�1X

h=0

Rh(sh, ah)|⇡
#

Finite Horizon MDPs

• Everything now depends on
the time step ℎ!

• Your strategy will differ at
start vs. end of the game.

1. Multi-agent
2. Large and Dynamical State/Action Space
3. Long Horizon

Challenges

Ablation Study

Proper Acknowledgements

• You can use any resources that you can find online, given that you cite
them properly in your presentation as well as your final reports.

Chapter 4: Value-based RL

Recap: Online Reinforcement Learning

• Start by knowing nothing about the environment.
• Gather information while interacting with the environment.
• Gather reward / suffer costs along the way.

Last time: Model-based RL

A Naïve model is difficult to learn Latent model: Dreamer, MuZero

𝑧!"#

𝑃(𝑧!"#|𝑧! , 𝑎!)

𝑠!"#

𝑠!

𝑧!

𝑠!

𝑠!"#

𝑃(𝑧!"#|𝑧! , 𝑎!)

However..

• Even with a good model, planning is still difficult.

🤔 Can we bypass learning the model at all?

Model-based vs. model-free RL

• Model-free RL: algorithms that avoid explicitly learning the transition
model.

The RL Ontology

Model-based Value-based Policy-based

All RL algorithms

Actor-critic (not covered in this course)

Value-based RL

• Estimate the 𝑄∗ function directly from data.

• Why the 𝑄∗ function?

• With a finite action space, one can make decisions directly from the
𝑄∗ function.

<latexit sha1_base64="4Rueo1ZD+bVanIPDrUUcNdDKOZs=">AAACg3icfVHbSsNAEN3Ge7xVfRRhsQjeKImI+iKI+uCLN7AqNLVMttO6uNmE3Y1YQp/8Gl/1a/wbN20EbziwcPbMGWbmTJgIro3nvZecoeGR0bHxCXdyanpmtjw3f63jVDGssVjE6jYEjYJLrBluBN4mCiEKBd6ED0d5/uYRleaxvDLdBBsRdCRvcwbGUs3yUpDwu/VVvUb3aQCqE8FTE+hlTm3CWrNc8apeP+hv4BegQoq4aM6VzoJWzNIIpWECtK77XmIaGSjDmcCeG6QaE2AP0MG6hRIi1I2sv0ePrlimRduxsk8a2me/VmQQad2NQquMwNzrn7mc/CtXT017r5FxmaQGJRs0aqeCmpjmptAWV8iM6FoATHE7K2X3oIAZa923Lk+DUf/s7AbHaJdWeGp/5wkqMLFazwpbe9aETrCZo/+EXH4KLXJdewH/p9+/wfVW1d+p7lxuVw4Oi1uMk0WyTFaJT3bJATkhF6RGGHkmL+SVvDkjzoaz5WwPpE6pqFkg38LZ/wDBBcP6</latexit>

⇡⇤(s) = argmax
a

Q⇤(s, a)

Solve for 𝑄∗ from data

Recall Value Iteration (VI):

1. Initialize	𝑄 ! arbitrarily.
2. For	𝑡 = 1,…𝑇
• 𝑄 , 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾𝔼-!∼/ ⋅|-,1 max

12
𝑄 ,3# 𝑠2, 𝑎2

3. Return 𝑄 # .

Solve for 𝑄∗ from data

Given a dataset D = (𝑠$, 𝑎$, 𝑟$, 𝑠$%) $&'
(.

Fitted Q iteration (FQI):

1. Initialize	𝑄 ! 	arbitrarily.
2. For	𝑡 = 1,…𝑇

• 𝑄 , 𝑠, 𝑎 = argmin4∈ℱ ∑,7#8 𝑓 𝑠,, 𝑎, − 𝑟, − 𝛾max1!
	𝑄 ,3# 𝑠,2, 𝑎2

9

3. Return 𝑄 # .

• ℱ is the function class.
• In the tabular setting, ℱ =
{𝑓: 𝑆×𝐴 → ℝ}

• More generally, ℱ can be a
neural network mapping from
𝑠, 𝑎 toℝ.

• FQI is actually used in offline RL.

Bellman Error

FQI solves for the equation 𝜕BE=0.

Recall model-based learning

Given a dataset 𝐷 = (𝑠$, 𝑎$, 𝑟$, 𝑠$%) $&'
(.

Model-based RL:

1. Learn >𝑃 𝑠% 𝑠, 𝑎 =)!(+,-,+")
)_0(+,-)

.

2. Return >𝑄 = 𝑄 12
∗ , e.g. via Value Iteration (VI).

🤔 𝑄(") from FQI vs. "𝑄 from MBRL?

😳 They are the SAME! i.e. lim
"→%

𝑄(") = "𝑄.

Hint: 𝑄(&) = "𝑄(&), where "𝑄(&) is from VI in "𝑃.

FQI is a fake model-free method??

• Q: What’s the difference between FQI and MBRL?
• A: Computational/Space complexity.

• MBRL learn and save the model, which lives in ℝ3×5×3.
• Value-based RL learn and save the Q function, which lives in ℝ3×5.

• In order to use FQI in online RL, one must store all historical data, of
size (𝑆 + 𝐴)𝑇, which sometimes dominates the space complexity.

A streaming algorithm: Q-Learning

• At time step 𝑡,
• Observes transition tuple (𝑠6 , 𝑎6 , 𝑟6 , 𝑠6%)
• Q-learning:

• 𝑄 ;"# 𝑠;, 𝑎; = 𝑄 ; 𝑠;, 𝑎; + 𝛼;(𝑠;, 𝑎;) 𝑟; + 𝛾max1!
𝑄 ; 𝑠;2, 𝑎2 − 𝑄 ; 𝑠;, 𝑎;

• Recall FQI:

• 𝑄 ; 𝑠, 𝑎 = argmin4∈ℱ ∑,7#8 𝑓 𝑠;, 𝑎; − 𝑟; − 𝛾max1!
𝑄 ; 𝑠;2, 𝑎2

9

• Q-learning is taking one gradient step w.r.t. the FQI objective with step size 𝛼;(𝑠;, 𝑎;).

When does Q-Learning converge to 𝑄∗?
• Theorem: Givenℳ = { 𝑆, 𝐴, 𝑃, 𝑟, 𝛾}, Q-learning given by the updated rule

𝑄 &'(𝑠& , 𝑎& = 𝑄 & 𝑠& , 𝑎& + 𝛼&(𝑠& , 𝑎&) 𝑟& + 𝛾max)$
𝑄 & 𝑠&*, 𝑎* − 𝑄 & 𝑠& , 𝑎&

converges w.p. 1 to 𝑄∗ if and only if

∑"#𝛼" 𝑠, 𝑎 = ∞ and ∑"#𝛼"$ 𝑠, 𝑎 < ∞.

for all 𝑠, 𝑎 ∈ 𝑆×A.

When does Q-Learning converge to 𝑄∗?

• If (𝑠, 𝑎) is not visited at step 𝑡, then 𝛼6 𝑠6 , 𝑎6 = 0.

• So ∑67 𝛼6 𝑠, 𝑎 = ∞ implies that each (𝑠, 𝑎) pair is visited infinitely
often.

• ∑67 𝛼68 𝑠, 𝑎 < ∞ implies that the learning rate must takes a
diminishing rate at least 𝛼6 𝑠, 𝑎 ∝ 1/ 𝑁6(𝑠, 𝑎) and at most
1/𝑁6(𝑠, 𝑎).

When does Q-Learning converge to 𝑄∗?

• However, this theorem only works for the tabular setting.

• When # state is large or infinite, you can’t hope to visit each state
infinitely often.

When does Q-Learning not converge to 𝑄∗?

• However, this theorem only works for the tabular setting.

• When # state is large or infinite, you can’t hope to visit each state
infinitely often.

• In fact, Q-learning is known to diverge under function approximation.

When does Q-Learning not converge to 𝑄∗?

• Q-learning can fail under function approximation:

𝜙 𝑠# = 1 𝜙 𝑠% = 2

1

1 − 𝜖

𝜖𝑆# 𝑆%

Next time..

• The heuristic solution that kinda(?) worked:

• DQN (2013) and its descendants

